We've provided this printable version of our review for your convenience. Please remember that your shopping clicks support this site. If you think this camera is a good choice for you, please consider returning to the link below to check prices and make a purchase via our shopping links.

Also note that this is just one of the pages from this review. Full reviews have several pages with complete analysis of the many test shots we take with each camera. Feel free to download and print them out to see how the camera will perform for you.

Full Review at: http://www.imaging-resource.com/PRODS/nikon-d800e/nikon-d800eA.HTM

Like this camera?
Save money online!
Prices as of 11/26/2014
Nikon D800E digital camera image
Save Money!
Nikon D800E

$2564.87



- That's the average, click to find the BEST price!

Your shopping clicks support this site, help keep the reviews coming!

Nikon D800E Brief Review

by , Mike Tomkins, Ellis Vener, Shawn Barnett and Zig Weidelich
Posted:

The Nikon D800E digital SLR is identical to the Nikon D800, except it's designed to remove the effects of the optical low-pass filter (OLPF) for slightly sharper images than normal. That puts it at risk of producing moiré patterns, false colors, and other aliasing artifacts. Our tests have found that to be true.

Because otherwise the D800E is so similar to the D800, this isn't a full review of the D800E. For a full review of the camera's other features, see our Nikon D800 review. For more on what makes the D800E unique, read on.

Anti-aliasing. Like almost all Bayer-filtered cameras, the standard Nikon D800 includes an optical low-pass filter (OLPF), sited just above the image sensor. The purpose of this filter is to blur incoming light just slightly, on the order of a pixel or less, thereby attempting to prevent aliasing patterns such as moiré and 'jaggies' from appearing in images. Unfortunately, this LPF also knocks out some subtle image detail, reducing per-pixel sharpness. In some types of photography such as landscapes or studio work, moiré is either less of an issue, or its effects can be taken into account by the photographer. If you're always shooting in these circumstances, the blurring is merely reducing image detail for no good reason. For this reason, some photographers either dismantle their cameras to remove the low-pass filters -- not a job for the faint of heart -- or pay to have somebody else do it for them. (There's been something of a cottage industry in this area for many years, now.)

With the introduction of the Nikon D800E, Nikon has acknowledged photographer desire for the maximum resolution -- even if potentially at the expense of moiré issues -- by offering two versions of the D800. The standard Nikon D800 includes a low-pass filter appropriate to the camera's resolution, while a more limited-edition Nikon D800E variant replaces the standard low-pass filter with a modified version, thus increasing image resolution. Nikon's approach is interesting, and was the subject of some confusion early after the D800E's announcement. The diagram below explains how the D800E's low-pass filter is set up.

First of all, it should be noted that the D800E does still include a low-pass filter, but Nikon has used the second layer of the LPF to undo the effects of the first.

In the illustration above, the top row shows the sequence of optical components as found in a conventional LPF, for instance that used in the standard D800. LPFs use birefringent materials to produce a slight doubling of the image in two directions. In the example above, the first LPF splits and shifts the image microscopically in the horizontal direction, the wave plate converts the polarized light into circularly polarized light, an IR cut-filter blocks infrared light, while a second LPF does the same as the first LPF except in the vertical direction. This results in four copies of the image slightly offset from each other on the sensor surface. As noted, the shift between the images is truly microscopic, typically less than a pixel. The net result is that the image is blurred slightly, hopefully by just the amount needed to avoid moiré patterns and jaggies. (There's some variation in the strength of the LPFs between manufacturers and models: Some are more conservative, introducing more blurring to protect against artifacts, while others cut it closer to the line, using weaker LPFs to give better detail, but at some increased danger of artifacts, something we still see in the D800.)

In the D800E, Nikon has moved the vertical LPF to the first position, substituted optical glass for the wave plate, and introduced an inverse vertical LPF as the second low-pass filter. In this way, the light has the same optical path through the LPF/IR filter stack as in the standard camera, but the effects of the first LPF layer are undone by the second. If the characteristics of the two LPFs are exactly opposite each other, the net result should be the same as if there were no LPF at all.

While the absence of a low-pass filter will make the Nikon D800E more prone to moiré, Nikon provides a color moiré correction tool in its Capture NX2 imaging suite to help cope with the problem. (It must be noted, though, that aliasing is a fundamental fact of life with undersampled digital data, and no amount of processing can guarantee to completely eliminate it.)

The natural question, of course, is why go to all this trouble; why not just eliminate the LPF altogether, as is done by third party LPF chop-shops? We've asked Nikon that question, and it turns out that removing the low pass filter would affect the focus enough that they needed to keep it in the optical formula. By using an inverse LPF layer to undo the effects of the first, the light refraction will be the same as in the standard D800, minus only the image-shifting that produces the low-pass filter behavior.

This also addresses the question some have had over why the Nikon D800E is slightly more expensive than the standard D800. It's not just a matter of not including the LPF, but rather that alternate components are substituted. The non-standard components would be low-volume, so they will have a higher cost. It's also possible that the LPF elements need to be more carefully screened and selected, so their image shifts will precisely cancel. Finally, the D800E requires a disruption of the normal production line, with cameras being pulled out for special treatment and then re-inserted. It's likely that the modified units also need to be tested separately, to insure that they meet the different sharpness specs for the E version. Each of these steps probably isn't terribly expensive in itself, but doubtless add up overall.

 

Studio Image Quality Comparisons

More thorough comparisons to other cameras appear below, but we left these few crops from the D800E and D800 so you can quickly see the difference.

Nikon D800E versus Nikon D800 via ISO 100 JPEGs

There's more crisp detail and slightly more vibrant color in the D800E files. Note that these are JPEGs, so we expect more detail from the RAW files below. (Click on the crops or links above to view the full resolution images.)

Nikon D800E versus Nikon D800 via ISO 100 ACR conversions

Same story here, with greater detail coming out of the Nikon D800E when converted via Adobe Camera Raw. See notes below. (Click on the crops or links above to view the full resolution images.)

RAW processing with ACR

To process the Nikon D800 and D800E NEFs in Adobe Camera Raw, we opened them using ACR 6.7 at its default settings, with the exception that we set sharpening to zero. (We like the results of unsharp masking in Photoshop better than those from the sharpening algorithm that's built into ACR.) We left luminance noise reduction sliders at zero, and left the Color and Color Detail sliders at their defaults of 25 and 50 respectively. We selected Medium Contrast curve, and used the "Adobe Standard" camera color profile. The Camera Calibration panel used the 2010 (current) process, as that's what we've been using for some time now in our ACR conversions.

Once opened in Photoshop, we applied unsharp masking at 200% and an 0.4 pixel radius. These settings gave us the best edge definition without causing overshoot or halos around strong contrast edges.

As you can see in the images here, the amount of detail the Nikon D800E can produce is quite astonishing, and the difference between it and the D800 is easily visible.


Nikon D800E Real-world Moiré Study

by Ellis Vener

The Nikon D800E is not the only camera that has moiré issues. But most digital cameras minimize the problem by incorporating a low-pass, or anti-aliasing filter that ever so slightly blurs the projected image as it reaches the sensor. It is a fine balancing act: too strong of a filter and the image doesn't have enough resolution -- no matter how many pixels the sensor has; too weak a filter and different types of aliasing problems -- like moiré -- become readily apparent. Almost all, if not all, medium format digital camera backs do not include an anti-aliasing filter in the optics that sit on the face of a sensor and the Foveon sensor designs Sigma uses in their SD and DP cameras lack one too. But as the D800E is the first popular DSLR to do away with an anti-aliasing filter, the moiré problem moves from being an obscure issue that specialists deal with to being closer to center stage.

If you are a landscape or wildlife photographer it is unlikely you'll ever see moiré. On the other hand if you photograph buildings, portraits and certain types of products -- any subject with a fine repeating pattern -- it is highly likely that moiré will show up, and sometimes in surprising places.

While this article deals with moiré and how to deal with it in the context of photographing architectural subjects, it applies to other genres of photography as well.

The first thing to understand about moiré is that it is caused by the interaction of fine repetitive subject detail projected on the sensor at a scale that causes it to interact with the grid of pixels. The same detail photographed with a longer lens or from a different angle or distance might not spring the moiré trap as the ratio between the size of the lens resolved detail and the pixel density on the sensor might not be right. On the other hand changing the camera to subject distance, the lens focal length -- both of which change the size of the image of the subject projected on the sensor, or the camera-to-subject angle may simply cause different moiré patterns to be created. Another way to change the probability of moiré formation is to either reduce optical resolution by using a lens that isn't great (a solution that has obvious drawbacks) or to use choose an aperture that slightly tips the resolution/diffraction balance in favor of the diffraction.

Examples of Moiré from the Nikon D800E and D800:

Nikon D800E
f/5.6, 1/1000s, ISO 125
24-70mm f/2.8G lens at 50mm
Nikon D800
f/5.6, 1/800s, ISO 125
24-70mm f/2.8G lens at 50mm
This first example is a typical building window with blinds shot with the same zoom range and settings on both cameras. Moiré is clearly present in images from both, but is noticeably more pronounced and obvious in the D800E. You can also see that while the settings and conditions are the same, the D800E produces warmer, more saturated colors than the D800. (Note: this is the same window but the blinds were moved during our shooting.)

Nikon D800E
f/5.6, 1/800s, ISO 125, 24-70mm lens at 28mm
Nikon D800
f/5.6, 1/1000s, ISO 125, 24-70mm lens at 28mm
These slats do not have the rainbow colors that the cameras are imposing upon them. Again, moiré is not as pronounced in the D800, but is still being created to a degree. In the D800E it is present in a large enough degree to be of genuine interest to anyone considering either camera who may be shooting subjects with certain repeating geometric patterns such as those shown in these images.

While the possibility of moiré formation may always be an issue with certain subjects, choice of raw converter also plays a supporting role.

According to Michael Tapes of PictureFlow llc., “The amount of moiré will be dependent on the raw converter in use as some designs favor sharpness while others favor smoothness.” Tapes goes on to point out that since “two-thirds of the color data for every pixel derived from a raw file has to be interpolated (guessed at) from surrounding pixels. How the demosaicing is done is a factor...in the end, the architect of the software has to decide how to balance the issues of sharpness, smoothness, and speed.”

Eric Chan of Adobe's Adobe Camera Raw and Lightroom team agrees and adds “Since demosaicing isn't perfect, there will be some false color artifacts, usually in fine detail areas. Different raw converters make different tradeoffs in their demosaic algorithms. This is part art, part science. Moiré also involves false colors, but is a somewhat different phenomenon.”

When testing for problems like moiré a brick wall is a handy subject, especially if it is very large; and even better, a brick wall with lots of other geometric patterns as well. Fortunately I had one handy. Using a Nikon AF-S 70-200mm f/2.8G ED VR II and an AF-S Nikkor 24-70mm f/2.8G ED I photographed it at 200, 165, 135, 120, 105, 95, 86, 78, 70, 60, 50, 42, 35, 32, 28, 26, and 24mm from a fixed position to demonstrate how changing the size of subject details on the sensor would affect moiré creation. The camera was triggered by a radio release system (LPA Design PocketWizard MultiMAX and cable). The tests were shot on an early morning in clear light on a day with minimal haze and pollution. Focusing was done using the camera's live view Contrast detecting autofocus mode with live view set to 100% (1:1 match between sensor pixels and camera monitor pixels).

The exposures were metered using the camera's 3D Color Matrix II metering system with the camera in aperture priority mode.

The raw NEF images were processed using Adobe Photoshop Lightroom 4.1 with all settings at Adobe's default except for the following:

Lightroom 4.1 was used as it is my standard raw processing program and I believe I know it pretty well. As pointed out previously different raw processing programs may handle the formation of the moiré patterns differently, or possibly create new ones.

With the D800E some moiré was present at all focal length settings from 165 to 24mm. It was subtle at first, showing up faintly in the details of some of the mini-blinds, but as the view became progressively wider the moiré changed in intensity and location.

Nikon D800E
f/5.6, 1/1000s, ISO 125, 24-70mm lens at 50mm
Nikon D800
f/5.6, 1/800s, ISO 125, 24-70mm lens at 50mm
These images are interesting as the D800 shows no evident moiré effect in the window on the left, but the D800E does. Just as interesting, the D800E turned the right window shade into either Aztec artwork or a rainbow-colored computer chip, take your pick!

Nikon D800E
f/5.6, 1/800s, ISO 125, 24-70mm lens at 28mm
Nikon D800
f/5.6, 1/1000s, ISO 125, 24-70mm lens at 28mm
Shown here is a gray wall alongside the freeway. The rainbow pattern created from the moiré effect is again present in the D800, yet is noticeably more obvious in the D800E. We know the pattern is moiré and not weathering because it's not present at other focal lengths.

What to do about moiré?

There are a couple of different approaches. One path is physical: at the capture stage, use a different lens or aperture to reduce optical resolution, or if possible change the camera-to-subject distance.

The other path is processing-related. Beyond using a different raw processor, some raw processors now include tools to reduce or remove moiré. Nikon's Capture NX2 uses a global approach to attack the moiré, but this can result in other unwanted artifacts. Lightroom 4.1 uses an anti-moiré adjustment brush that allows you to vary area and intensity of treatment, while Phase One's Capture One 6 takes another targeted approach that employs local adjustment layers and brushes to apply an anti-moiré treatment (see http://blog.phaseone.com/2012/05/10/removing-color-moire-with-capture-one-6/). In all cases I prefer methods that target specific problem areas to global treatments. The Lightroom 4.1 treatment removes the color of the moiré, but not the luminance errors; for that you'll need Photoshop.

Both the Nikon D800 and D800E capture extraordinary detail, but they also both exhibit noticeable moiré in certain subjects. This is an important consideration when pondering the purchase of the Nikon D800E. Make sure you're prepared to deal with the consequences of moiré in clothing and other artificial subjects before proceeding.

Additional Moiré Examples

As we've discussed, the Nikon D800E is more prone to producing aliasing artifacts such as the color moiré seen in the Samuel Smith bottle label of our Still Life scene above, though the Nikon D800 still shows hints of it. (Click on the crops or links above to view the full resolution images.)

D800E JPEG versus Adobe Camera Raw 6, ViewNX 2, and Capture NX 2

Above are crops comparing how the camera, Adobe Camera Raw 6.7, bundled Nikon ViewNX 2, and optional Nikon Capture NX 2 software handle moiré in the bottle label. As you can see, all the converters produced similar moiré interference patterns, though differences in color, sharpening and contrast make them a little more or less obvious. Note that ACR 6 and ViewNX 2 do not have moiré reduction tools. Capture NX 2 and ACR 7 do however offer moiré reduction capability -- see below for how well they work.

Nikon Capture NX 2 Color Moiré Reduction

Nikon's Capture NX 2 software (~$140) offers a Color Moiré Reduction option under the Camera & Lens Corrections menu when working with NEF/NRW files (it's not available for JPEGs). Four moiré reduction strengths are available: Off (default), Low, Medium and High, and we've made conversions at each of them (all other settings at defaults).

As can be seen above, Capture NX 2 (version 2.3.2) at the default Off setting shows a little less moiré than the camera JPEG, but it's still visible. All three active settings were quite effective at eliminating color moiré in the green bottle label, though there are still hints of a monochrome interference pattern left behind. Unfortunately all were also detrimental to some areas containing yellow in our Still Life image, especially the High setting. Notice the desaturation seen in the shoulders of the Mas Portell bottle, even at the Low setting. At the High setting, yellow and orange are sometimes displaced and bleed into adjacent areas. Very disappointing.

We recommend trying the lowest setting first to see if it's sufficient while minimizing side effects. The Medium and especially High settings definitely need work. Unfortunately, Capture NX 2 automatically determines where to apply Color Moiré Reduction, so as far as we can tell, you can't apply it selectively like many other adjustments in the software. We'll try to find some more obvious examples of moiré, to get a better idea of how the software handles different cases, and whether the Medium and High settings are likely to be needed.


Adobe Camera Raw 7 Moiré Reduction

Adobe Camera Raw 7 and Lightroom 4 have moiré reduction capability, via the Adjustment Brush tool. Unlike Nikon Capture NX 2, you can apply it selectively to areas that need it. Here, we've applied it to just the label at strength set to 100 (above right). As you can see, it's effective at removing the color in our bottle label moiré, but it unfortunately leaves the luminance pattern making moiré even more obvious in this case. You can however tweak the strength of reduction to perhaps compromise between the chrominance and luminance pattern, but the tool isn't nearly as effective as Capture NX 2's moiré reduction. What's really needed is a hybrid of NX 2's moiré reduction algorithm combined with the capability of applying it locally as offered by ACR7/LR4.

A note about detail, focus, and depth of field

The combination of resolution, frame size, and the 70mm focal length of our standard lab lens resulted in a surprisingly shallow depth of field, even at f/8. On a full-frame camera, correct framing with the 70mm lens results in a camera-subject distance of about 5.5 feet. Shooting at f/8 at that distance, we discovered we could see differences in sharpness across just 3 inches or so (maybe even 2 inches) of subject depth. This meant we had to be exceptionally precise in our focusing to make sure all parts of the target were rendered as sharply as possible, and to insure that the shots we took with the D800 and D800E were focused precisely the same.

As it turned out, we got the focal distance with the two camera bodies within a half an inch of each other, plenty close enough to make valid comparisons between the two bodies. (Borne out by how well all parts of the shot are focused with both cameras.)

The fact that we had to labor this much to get the focus down to within a half an inch (or ± a quarter of an inch) is a little telling, and perhaps suggests where the natural markets for this camera lie. If you're shooting subjects at relatively close range in a studio, or shooting portraits, trivial focus differences are likely to completely override any difference between the D800E and the D800. The part of the image that's in sharpest focus will indeed show slightly more detail than it would on the D800, but it's going to be tricky to get the plane of focus exactly where you want it, even with manual focusing in Live View mode.

Combine the criticality of focus with the D800E's tendency to produce moiré, and it seems to us that the D800E's natural home will be in landscape and architecture photography (where the subject distances are likely to be greater), or in some kinds of scientific imaging. Overall, we agree with Nikon that the D800E probably isn't for the bulk of photographers, who'd be better served by the standard D800.

 

Nikon D800E Image Quality Comparison

Below are crops comparing the Nikon D800E to the Nikon D800, Nikon D3X, Canon 5D Mark III , Pentax 645D, and Sony A99. Note that the 645D only goes to ISO 1,600, so crops will be absent at ISO 3,200 and 6,400.

NOTE: These images are best quality JPEGs straight out of the camera, at default settings including noise reduction. All cameras in this comparison were shot with our very sharp reference lenses.


Nikon D800E versus Nikon D800 at ISO 100

Nikon D800E at ISO 100
Nikon D800 at ISO 100

Image quality is very similar, but there's a little more detail in the D800E crops, as well as a little more color, yellow in particular.


Nikon D800E versus Nikon D3X at ISO 100

Nikon D800E at ISO 100
Nikon D3X at ISO 100

The Nikon D800E has a noticeable advantage over the 24.5-megapixel Nikon D3X, revealing the threads in the red leaf swatch, while the D3X only finds the leaf pattern.


Nikon D800E versus Canon 5D Mark III at ISO 100

Nikon D800E at ISO 100
Canon 5D MK III at ISO 100

Again, the Nikon D800E unsurprisingly finds a lot more detail in every aspect of the target, and gets the red leaf and pink swatch more correct by comparison.


Nikon D800E versus Pentax 645D at ISO 100

Nikon D800E at ISO 100
Pentax 645D at ISO 100

The 40-megapixel Pentax 645D reveals the colors between the grout lines on the mosaic image (they're really there; we looked), something the Nikon D800E suppresses as if it were chroma noise. Still, the D800E's rendering of the red leaf swatch is more appealing, and the pink swatch still looks pink, while the 645D renders it purple.


Nikon D800E versus Sony A99 at ISO 100

Nikon D800E at ISO 100
Sony A99 at ISO 100

Sony's 24-megapixel full-frame A99 does a lot of processing, and it's even apparent here at ISO 100, especially compared next to the D800E. Both look good -- indeed surprisingly similar renderings -- but the D800E shows so much more detail.



Most digital SLRs and CSCs will produce an excellent ISO 100 shot, so we like to push them and see what they can do compared to other cameras at ISO 1,600, 3,200, and 6,400. Recent advances in sensor technology have made ISO 1,600 look a lot more like ISO 100, but there are still cameras whose quality starts to fall apart at this setting. We also choose 1,600 because we like to be able to shoot at least at this level when indoors and at night.

Nikon D800E versus Nikon D800 at ISO 1,600

Nikon D800E at ISO 1,600
Nikon D800 at ISO 1,600

There's very little difference between the D800E and D800 even at ISO 1,600, but it's easy to see slightly more softness in the D800's images, and yellows remain brighter in the D800E image.


Nikon D800E versus Nikon D3X at ISO 1,600

Nikon D800E at ISO 1,600
Nikon D3X at ISO 1,600

Contrast looks a little stronger in the D800E, and detail remains stronger, though there's a little more noise in the shadows.


Nikon D800E versus Canon 5D Mark III at ISO 1,600

Nikon D800E at ISO 1,600
Canon 5D MK III at ISO 1,600

Nikon's handling of noise is more even-handed than Canon's, with the D800E's images looking more like film, while the 5D Mark III's powerful processors go to work on the noise in the red leaf swatch and shadows, yet still retain the high-contrast detail in the mosaic image.


Nikon D800E versus Pentax 645D at ISO 1,600

Nikon D800E at ISO 1,600
Pentax 645D at ISO 1,600

At its highest ISO setting, the Pentax 645D is sharper than the D800E in the mosaic swatch, but the D800E does a little better with the red leaf and pink swatch, particularly the color rendering.


Nikon D800E versus Sony A99 at ISO 1,600

Nikon D800E at ISO 1,600
Sony A99 at ISO 1,600

The Sony A99 also does its selective processing, while the D800E really does a great job presenting a more even image.



Here are ISO 3,200 comparisons.

Nikon D800E versus Nikon D800 at ISO 3,200

Nikon D800E at ISO 3,200
Nikon D800 at ISO 3,200

At ISO 3,200, the D800E still has an advantage, if only slight. The color difference is also still apparent.


Nikon D800E versus Nikon D3X at ISO 3,200

Nikon D800E at ISO 3,200
Nikon D3X at ISO 3,200

The D3X really smooths things out , while the D800E leaves a little more chroma noise in the shadows and captures more detail (owing mostly to its higher resolution) noticeable in the red leaf swatch.


Nikon D800E versus Canon 5D Mark III at ISO 3,200

Nikon D800E at ISO 3,200
Canon 5D MK III at ISO 3,200

The 5D Mark III's detail look bolder and more contrasty, all but the red leaf swatch, which is quite processed by comparison.


Nikon D800E versus Sony A99 at ISO 3,200

Nikon D800E at ISO 3,200
Sony A99 at ISO 3,200

Sony's anti-noise processing is shifted into high gear by comparison to the D800E, but it's still not bad; just very different. What's remarkable is how well the Nikon D800E does despite its smaller pixels.



Detail: Nikon D800E versus D800, Nikon D3X, Canon 5D Mark III, Pentax 645D, and Sony A99

N/A
N/A
Nikon
D800E

ISO 100
ISO 3,200
ISO 6,400
Nikon
D800

ISO 100
ISO 3,200
ISO 6,400
Nikon
D3X
ISO 100
ISO 3,200
ISO 6,400
Canon
5D MK III
ISO 100
ISO 3,200
ISO 6,400
Pentax
645D

ISO 100
ISO N/A
ISO N/A
Sony
A99
ISO 100
ISO 3,200
ISO 6,400
Detail comparison. High-contrast details are often sharper as ISO rises, so they're worth a look as well. It's difficult to say much here, looking at all these high-performing cameras. The Canon 5D Mark III images pop a little more, but they also have more contrast and bright sharpening halos helping that effect. The Nikon D3X is a little softer, but maintains the red pretty well as ISO rises. The D800E might be a little sharper than the D800, but it's hard to tell. The most processed image is the Sony A99, with more artifacts as the ISO rises, particularly in the red letters. Overall, the Nikon D800E looks very strong, turning in more detail than most of the competition at these ISO settings.

 

In the Box

The retail package contains the following items:

 

Recommended Accessories

 

Pro: Con:
  • Solid build
  • Excellent controls, positioned well
  • 51-point AF
  • Extremely high resolution
  • Excellent image quality
  • Excellent dynamic range
  • Surprising high ISO performance
  • DX crop mode produces 15.4-megapixel images
  • Automatic CA reduction
  • Optional Vignette and Distortion correction (for most D and G Nikkor lenses)
  • Built-in flash
  • Pop-up flash can act as commander to wireless slaves
  • Dedicated AF assist lamp
  • Very customizable
  • Auto ISO can take current focal length into account for minimum shutter speed
  • Active D-Lighting helps in high contrast situations
  • In-camera HDR mode
  • Interval timer and multiple exposure support
  • Dual-axis level sensor
  • Dual card slots
  • Full HD (30p/25p/24p) video at 24Mbps
  • Uncompressed video streaming via HDMI
  • External stereo mic and headphone jacks
  • USB 3.0 port
  • Good battery life
  • Problem of moiré with certain image elements at frequencies that approximate the sensor grid
  • Camera may capture too much detail for some
  • Resolution makes focus, lens quality and technique more critical
  • File sizes are extremely large (though there are options to reduce them at reduced quality)
  • Auto and Incandescent White Balance too warm indoors
  • Somewhat slow autofocus for a professional model
  • Full-resolution burst speed limited to 4 fps (though not bad considering the resolution)
  • Optical viewfinder coverage not quite 100%
  • No reduced-resolution RAW options
  • Live view autofocus is very slow
  • Reduced battery life compared to D700
  • Green cast to custom and Kelvin white balance; perhaps also to LCD

 

As we said at the outset, this review is more about the single difference between the D800 and D800E: the absence of a low-pass filter and its effects. It's clear from our analysis that both the D800 and D800E have moiré issues, but the D800E's is much more apparent and challenging to address. What we also found was that the D800E indeed captures more detail than the D800, making it uniquely suited to landscape photography, or scientific applications where moiré won't be an issue.

Unfortunately, our review of our sample images revealed quite a few instances where moiré was a problem with both cameras, with amplified effects in the D800E that we think outweighs the resolution advantage for most photographers. In almost every instance of man-made items, from buildings to fabric, you're at risk of encountering moiré among repeating patterns. It's also easy to find rainbow colors in hair, both human and animal, that could be objectionable. There's no way to avoid it, so people without a special use for the D800E will do well to avoid the camera. Removing moiré from more than a few images is really more trouble than it's worth.

Moiré was also pronounced in video files from the D800E, which we think is more likely due to insufficient digital filtering in the D800E's firmware than from the lack of a low-pass filter. We had to send back the D800 before we were able to shoot any simultaneous subjects to test the theory, but we think it's safe to say the D800E offers no advantage for video capture, as its superior resolution is only seen at the full-resolution 7,360 x 4,912 level, not at the significantly reduced 1,920 x 1,080 resolution of Full HD video.

Read our review of the Nikon D800 for the rest of what we liked and didn't about the camera overall, or skim the Pro/Con list above. As we said of the Nikon D800, it's an excellent camera with a gentlemanly demeanor and just about everything a serious photographer could want, but the one feature that improves the D800E's resolution also proves a limiting factor that's a bad idea to ignore. If you'll be exclusively photographing natural landscapes or other subjects where you can be confident that moiré won't be a problem, or if you need to avoid the low-pass filter for scientific imaging, the D800E is a fine choice. In our opinion, though, the vast majority of photographers will be better off saving the US$300 difference in price and going with the excellent D800 instead.

 

Follow Imaging-Resource.com on Twitter!